Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024520140230040543
Journal of the Environmental Sciences
2014 Volume.23 No. 4 p.543 ~ p.552
Error Analysis for Electromagnetic Surface Velocity and Discharge Measurement in Rapid Mountain Stream Flow
Kim Dong-Su

Yang Sung-Kee
Jung Woo-Yul
Abstract
Fixed Electromagnetic Wave Surface Velocimetry (Fixed EWSV) has been started to be used to measure flood discharge in the mountain stream, since it has various advantages such that it works well to continuously measure stream discharge even in the night time as well as very strong weather. On the contrary, the Fixed EWSV only measures single point surface velocity, thus it does not consider varying feature of the transverse velocity profile in the given stream cross-section. In addition, a conventional value of 0.85 was generally used as the ratio for converting the measured surface velocity into the depth-averaged velocity. These aspects could bring in error for accurately measuring the stream discharge. The capacity of the EWSV for capturing rapid flow velocity was also not properly validated. This study aims at conducting error analysis of using the EWSV by: 1) measuring transverse velocity at multiple points along the cross-section to assess an error driven by the single point measurement; 2) figuring out ratio between surface velocity and the depth-averaged velocity based on the concurrent ADCP measurements; 3) validating the capacity of the EWSV for capturing rapid flow velocity. As results, the velocity measured near the center by the fixed EWSV overestimated about 15% of the cross-sectional mean velocity. The converting ratio from the surface velocity to the depth-averaged velocity was 0.8 rather than 0.85 of a conventional ratio. Finally, the EWSV revealed unstable velocity output when the flow velocity was higher than 2 m/s.
KEYWORD
Electromagnetic wave surface velocimetry, Mountain stream, Flood discharge, ADCP, MSIV
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)